### Consistency with a set of variables

• **Definition:** An instantiation  $(x_{i_1} = d_{i_1}, \dots, x_{i_u} = d_{i_u})$  is consistent with a set of variables  $x_{j_1}, \dots, x_{j_v}$  if there is an instantiation

$$(x_{i_1} = d_{i_1}, \dots, x_{i_u} = d_{i_u}, x_{j_1} = d_{j_1}, \dots, x_{j_v} = d_{j_v})$$
 that is consistent

- a consistent solution is consistent with all sets of variables
- an inconsistent instantiation is inconsistent with all sets of variables

### Finding all solutions with CBJ

- When CBJ finds a solution, set the conflict set at level n to be  $\{nd_1, \dots, nd_{n-1}\}$ 
  - forces chronological backtracking
- Associate a  $vcf_i$  (valid conflict set) flag at each level
  - clear all flags when a solution is found
  - backtrack chronologically when  $vcf_i$  is clear
  - set  $vcf_i$  when going forward

## BJ and consistency of instantiations

• Lemma 5: If BJ performs a backtrack to variable  $x_h$  from a deadend at variable  $x_i$ , then the instantiation

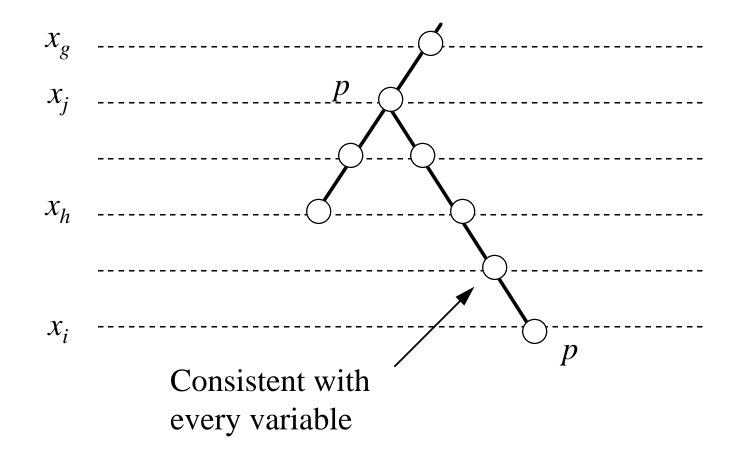
$$(x_1 = a_1, ..., x_h = a_h)$$

is inconsistent with  $x_i$ 

### Backtrack rank for CBJ

- Types of CBJ backtracks
  - A-type backtracks result from inconsistencies ( $vcf_i$  is set)
  - B-type backtracks are chronological, caused by searching for additional solutions ( $vcf_i$  is clear)
- **Definition:** The *backtrack rank* of an *A-type* backtrack from  $x_i$  to  $x_h$  is
  - -1 if the backtrack is directly from a dead-end at  $x_i$
  - -d > 1 if all backtracks performed to  $x_i$  have rank less than d and at least one has rank d-1

## CBJ and consistency of instantiations

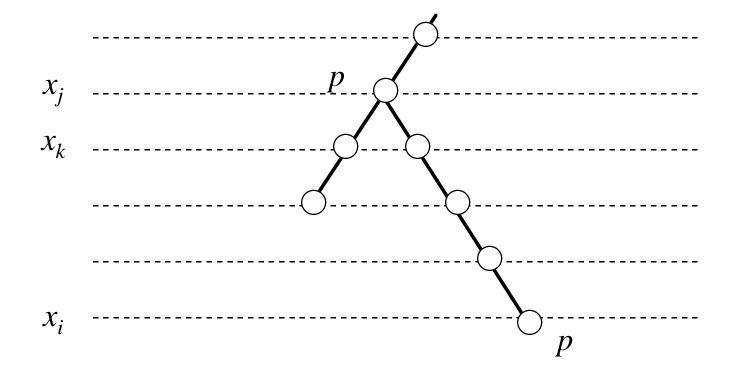

- Lemma 7: If CBJ performs an A-type backtrack from  $x_i$  to  $x_h$  then there exists a set of variables S such that
  - S is a subset of  $\{x_i, \dots, x_n\}$  and contains  $x_i$ ; and
  - the instantiation of variables in conf-set $_i$  is inconsistent with S

### Sufficient conditions to visit a node

#### • Theorem 8:

- If the parent of a node is consistent, then BT visits the node
- If the parent of a node is consistent with every variable,
  then BJ visits the node
- If the parent of a node is consistent with every set of variables, then CBJ visits the node
- If a node is consistent and its parent is consistent with every variable, then FC visits the node

### Proof of BJ's sufficient conditions



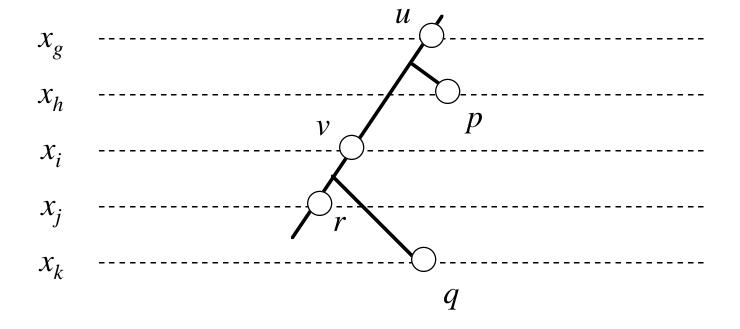

### Necessary conditions to visit a node

#### • Theorem 9:

- If BT visits a node, then its parent is consistent
- If BJ visits a node, then its parent is consistent
- If CBJ visits a node, then its parent is consistent
- If FC visits a node, then it is consistent and its parent is consistent with every variable

# Proof of FC's necessary condition




### Summary

### • Corollary 10:

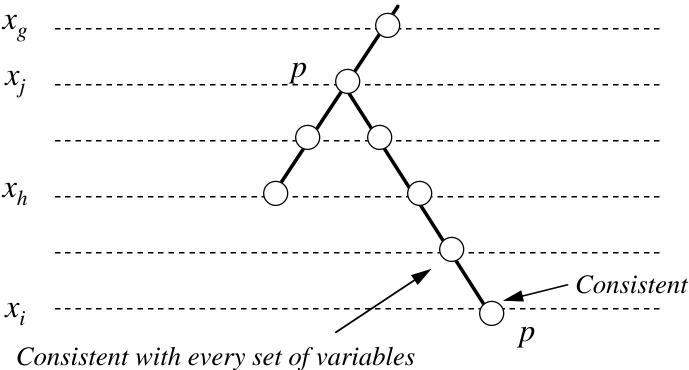
- BT visits all nodes that BJ visits
- BT visits all nodes that CBJ visits
- BT visits all nodes that FC visits
- BJ visits all nodes that FC visits

### Connection between CBJ and BJ

• Theorem 11: BJ visits all nodes that CBJ visits



## FC-CBJ's necessary condition


- Theorem 16: If FC-CBJ visits a node, then it is consistent and its parent is consistent with every variable
- ⇒ FC visits every node that FC-CBJ visits

## FC-CBJ and consistency of instantiations

- Lemma 17: If FC-CBJ performs an A-type backtrack from  $x_i$  to  $x_h$ , then there exists a set of variables S such that
  - S is a subset of  $\{x_i, \dots, x_n\}$  containing  $x_i$ ; and
  - the instantiation of variables in the conflict set of  $x_i$  is inconsistent with S

### FC-CBJ's sufficient condition

• Theorem 18: If a node is consistent and its parent is consistent with every set of variables, then FC-CBJ visits the node



### Correctness of procedures

### Corollary 12 and 19:

- BT is correct
- BJ is correct
- CBJ is correct
- FC is correct
- FC-CBJ is correct
- In the proofs
  - soundness is established by the necessary condition
  - completeness is established by the sufficient condition

## Hierarchy of visited nodes

• Figure 7 from Kondrak and van Beek 1997

# Hierarchy of consistency checks

• Figure 8 from Kondrak and van Beek 1997

## Single solution and DVO

- Results continue to hold when only single solution are desired
  - one can reformulate all theorems to include an additional condition: "...and the node *precedes* the *termination* node"
- Results continue to hold with DVO provided
  - heuristic for choosing the next variable is deterministic and independent of the backtracking algorithm